In order to test the strength of a rope, one end is tied to a large tree and the other end is hitched to a team of $2$ horses. The horse pull as hard as they can, but cannot break the rope. If the rope is untied from the tree and attached to another team of $2$ horses with equal strength, and the two teams pull in opposite directions, the tension in the rope will
decrease by a factor of $2$
remain the same
increase by a factor of $2$
increase by a factor of $4$
Give the magnitude and direction of the net force acting on a stone of mass $0.1\; kg$,
$(a)$ just after it is dropped from the window of a stationary train,
$(b)$ just after it is dropped from the window of a train running at a constant velocity of $36 \;km/h$,
$(c)$ just after it is dropped from the window of a train accelerating with $1\; m s^{-2}$,
$(d)$ lying on the floor of a train which is accelerating with $1\; m s^{-2}$, the stone being at rest relative to the train.
Neglect air resistance throughout.
For a free body diagram shown in the figure, the four forces are applied in the ' $x$ ' and ' $y$ ' directions. What additional force must be applied and at what angle with positive $x$-axis so that the net acceleration of body is zero?
A parachutist of weight $‘w’$ strikes the ground with his legs fixed and comes to rest with an upward acceleration of magnitude $3 \,g$. Force exerted on him by ground during landing is
A car accelerates on a horizontal road due to the forces exerted by